
Building Better and Safer Programs

Using SPARK and Ada

William Wong
23 March 2019

Intent of This Presentation

- Highlight Ada and SPARK programming features

• Provide a general overview of major features

- Get you to consider using Ada or SPARK for new projects

• Make the compiler do the work

- Present Ada and SPARK resources

When It Just Has to Work

- Vermont Lunar CubeSat

• Launched in NASA’s ELaNa IV on an Air Force ORS-3
Minotaur 1 flight November 19, 2013 to a 500 km
altitude and remained in orbit until reentry over the
central Pacific Ocean, November 21, 2016. Eight other
CubeSats were never heard from, two had partial
contact for a week, and another worked for 4 months.

• Operated until reentry after 11,071 orbits

• Code written in SPARK/Ada 2014

• 5991 lines of code

• 2843 lines of SPARK annotations

• 98% proven automatically

What is Ada and SPARK

- Ada

• A programming language develop in 1980 for the U.S. Department of Defense
(DoD) for high integrity, embedded and real-time systems

• Major revisions: Ada 95, Ada 2005, Ada 2012

• Supports strong typing, modularity mechanisms (packages), run-time
checking, parallel processing (tasks, synchronous message passing, protected
objects, and nondeterministic select statements), exception handling, and
generics. object-oriented programming, including dynamic dispatch

- SPARK

• Subset of Ada, SPARK 2014 is based on Ada 2012

• Provable programs using contracts

Additional

SPARK

contracts

not in Ada

SPARK and Ada

Ada

features

not in SPARK
Language

constructs

common to

both

SPARK also serves as a testbed for Ada 202x

Why Consider Ada and SPARK

- Improve code quality by reducing errors

- Rising security requirements

- Rising safety/liability issues

- Reduce programming costs (more on this later)

- Portability

- Provable programs when using SPARK

Reducing Development/Support Costs
- MITRE

• Annual Average Costs for Software Maintenance, 1994

- Steve Zeigler

• Comparing Development Costs of C and Ada, March 30, 1995

- Capers Jones

• Letter to CrossTalk, Oct. 1998

- VDC Research

• Controlling Costs with Software Language Costs, 2018

• https://www.adacore.com/papers/controlling-costs-with-ada

SPARK Reliability Example

- MULTOS is an “operating system” for smartcards

- 100,000 lines of SPARK code

- Industry standard is 5 defects per 1,000 lines

• Thus approximately 500 defects expected

- Only 4 defects reported 1 year after delivery

• 0.04 per KSLOC

• Corrected under warranty (!)

- Ultra-high reliability achieved

SPARK Productivity Example

- Industry standard is 10 lines of code per day

• Fully documented, tested, everything

• In any language

- MULTOS project achieved 28 lines of code per day

- Very high levels of productivity achieved

Ada and SPARK Evolution

Ada 83

• Abstract Data Types

• Modules

• Concurrency

• Generics

• Exceptions

• etc.

Ada 95

• Efficient

synchronization

• OOP

• Better Access

Types

• Child Packages

• Annexes

Ada 2005

• Multiple Inheritance

• Containers

• Useful Limited Types

• More Real-Time

• Ravenscar

Ada 2012

• Contracts

• Iterators

• Flexible Expressions

• More Containers

• More Real-Time

Support

SPARK 2014

SPARK 2005

SPARK 95

SPARK 83

11 Myths About Ada (on electronicdesign.com)

1. Ada is dead

2. Ada code is slow and bulky

3. Ada doesn’t let you get “down and dirty” with the hardware

4. Ada is stuck in the 1980s

5. Ada requires a whole new way of thinking about programming

6. Ada requires special compiler technology and does not fit in well with other
languages

7. Ada is not used in academia

8. Ada doesn’t have many tools beyond the compiler

9. Ada is too complex

10.Ada was designed by committee

11.Most software problems are due to poorly specified requirements rather than
coding errors, so the programming language doesn’t matter that much

Ada Features

- Intelligent syntax

- Precise data type definition

- Built-in concurrency and real-time support

- Nested procedures and functions

- Object-oriented programming

- Generic templates

- Programming in the large

- Contracts

Ada Feature: Intelligent Syntax

-- Assignment using := not =
My_variable := 100;

-- Matching begin/end names
-- Edit templates handle extra verbosity
procedure Swap (X, Y: in out integer) is
T : integer := X ;

begin
X := Y ;
Y := T ;

end Swap;

Reduces

typographical

errorsLets the

compiler do the

checking

Ada Feature: Precise Data Types

- Precise data type definition

• Fixed point and complex values

• Constraint checking for variable values and array ranges

• Bit and byte layout record definitions

- Storage pools are part of the language, not an add-on library

Ada Feature: Precise Data Types

-- Integers
type Buffer_Size is range 1 .. 200;

-- Fixed point
type My_Fixed is delta 0.01 range 0.0 .. 10.0;

-- Decimal
type Percentage is delta 0.1 digits 4 range 0.0 … 100.0 ;

-- modular
type Byte is mod 256;

-- Subtypes
subtype Positive is Integer range 1..Integer'Last;

Checked at

Run-Time
Fine grain

specifications

Ada Feature: Constraint Checking

procedure sample is
-- Flexible Array Bounds
my_array : array (-10 .. 10) of integer;

-- Enumerated Array Bounds
type days is (Sunday, Monday, Tuesday, Wednesday,

Thursday, Friday, Saturday);

hours: array(Sunday .. Saturday) of integer;

-- Range check of variables
type Buffer_Size is range 1 .. 200;
My_buffer_size : Buffer_Size := 200;

-- Generates Constraint Error
My_buffer_size := My_buffer_size + 1 ;

Checked at

run-time

if range

cannot be

proven at

compile time

Prevent buffer

overflows

Ada Feature: Bit Field Definitions

for T use record
I at 0 range 0 .. 15; -- two bytes
A at 2 range 0 .. 12;
B at 2 range 13 .. 17;
C at 2 range 18 .. 23;
D at 5 range 0 .. 7; -- one byte

end record;

Coexistance

of

big and little

endian

support
No masks

needed

Big endian
Byte 0 1 2 3 4 5

012345670123456701234567012345670123456701234567
IIIIIIIIIIIIIIIIAAAAAAAAAAAAABBBBBCCCCCCDDDDDDDD

Little endian
Byte 5 4 3 2 1 0

DDDDDDDDCCCCCCBBBBBAAAAAAAAAAAAAIIIIIIIIIIIIIIII
765432107654321076543210765432107654321076543210

Ada Feature: Concurrency Support

- Runtime provided or support can be mapped to RTOS

- Standard features:

• Tasks

• Rendevous

• Selective Wait

• Guards

• Protected Types: Allows safe usage of variable data without the need for any explicit
mutual exclusion and signaling mechanisms

- Concurrency profiles (next slide)

Ada Feature: Concurrency Profiles

- Full

• All features are available

- Ravenscar

• Subset of Ada concurrency support, no dynamic task priorities

• Designed for safety-critical applications

- Jorvik (Extended Ravenscar)

• Relaxes some restrictions such as those related to protected entries

Ada Feature: Nested Procedures

procedure Nested_function_example is
-- local variables accessible by nested procedure check_limit
Count: Integer := 0;
Limit: Integer := 2;
procedure check_limit (C : Integer) is

begin

if C <= Limit then

Count := Count + 1;

end if;
end check_limit;

type Vector is array (Integer range <>) of Integer;
X : Vector := (1,2,3,4,5);
Index : Integer;

begin
-- map check_limit over vector X
for Index in X'Range loop

check_limit(X(Index));
end loop;

end Nested_function_example;

Ada uses

nested functions

instead of lambdasNested procedures

keep local

functionality local

Ada Feature: Object Oriented Programming

- Polymorphism

- Interfaces

- Multiple inheritance

- Inheritance related pre and post condition contracts

Ada Feature: Generics

- Generic subprograms (procedures)

• Comparable to Java and C++ template function definitions

- Generic packages (classes)

• Comparable to Java and C++ template class definitions

- Generic parameters

• Example: Allows the definition of a sort algorithm for any kind of array

Ada Feature: Programming in the Large

- Ada is designed to handle large, complex projects

- Hierarchical package system

- Exception handling

- Encapsulation

- Access types

- OOP contract support (already mentioned)

- Generics (already mentioned)

Programming in the Large: Exceptions

begin

-- some code

exception
when Constraint Error | Storage Error =>

-- error handling code
when others =>

-- other error handling code
end;

Actually easier to

read syntax than

some other

programming

languages

Exception

handling

organized

around

statement

blocks

Programming in the Large: Encapsulation

package Stacks is
type Stack_Type (Size : Integer) is private;

private
type Stack_Type (Size : Integer) is record

V : Integer;
end record;

end Stacks;

Only expose

what is

necessary
Public

discriminants

on

private types

Programming in the Large: Access Types

- Mitigating factors

• Arrays are cannot be used as pointers

• Parameters are implicitly passed by reference

- Access types (pointers) are distinct types that can be limited to
referencing specific areas such as data pools

- Accessibility checks allow only valid references

Ada Feature: Contracts

- Added in Ada 2012

- Contract types

• Procedure pre and post conditions

• Subtype predicates

• Type invariants

• Loop invariants

- Required by SPARK to support provability

Contracts Example: Pre/Post

procedure Push (This : in out Stack; Value : in Content) with

Pre => not Full (This),

Post => not Empty (This)

and Top (This) = Value

and Extent (This) = Extent (This'Old) + 1

and Unchanged (This'Old, Within => This);

…

function Full (This : Stack) return Boolean;

function Empty (This : Stack) return Boolean;

function Top (This : Stack) return Content with

Pre => not Empty (This);

function Extent (This : Stack) return Content_Count;

function Unchanged (Invariant_Part, Within : Stack) return Boolean;

Checked at

Run-Time
Low-Level

Requirements

Contracts: Pre/Post Advantage

- Allows code analysis of caller without access to called code because
pre and post conditions are defined

Contracts Example: Predicates

procedure Show_Dynamic_Predicate_Courses is

pragma Assertion_Policy (Dynamic_Predicate => Check);

package Courses is
type Course_Container is private;

type Course is record
Name : Unbounded_String;
Start_Date : Time;
End_Date : Time;

end record
with Dynamic_Predicate =>

Course.Start_Date <= Course.End_Date;

-- additional definitions
begin
-- additional code

end Show_Dynamic_Predicate_Courses;

Static and

dynamic

predicates are

supported
Predicates

apply to

types

Contracts Example: Type invariant

procedure Show_Type_Invariant is
pragma Assertion_Policy (Type_Invariant => Check);
package Courses is

type Course is private
with Type_Invariant => Check (Course);

type Course_Container is private;

function Check (C : Course) return Boolean;
private

type Course is record
Name : Unbounded_String;
Start_Date : Time;
End_Date : Time;

end record;
function Check (C : Course) return Boolean is

(C.Start_Date <= C.End_Date);
end Courses;
begin
end Show_Type_Invariant;

Used

exclusively

to check

private types
Predicates

apply to

types

Contracts Example: Loop invariant

function Get_Prime (Low, High : Positive) return Natural is
J : Positive := Low;

begin
while J <= High loop
if Is_Prime (J) then

return J;
end if;

pragma Loop_Invariant
(J in Low .. High
and

(for all K in Low .. J => not Is_Prime (K)));

J := J + 1;
end loop;
return 0;

end Get_Prime;

Used

for formal

verification

Loop invariant

condition

must be true

for each

iteration

What Can We Prove, Statically?

- Freedom from run-time errors (!!)

• No buffer overflow, numeric overflow, divide by zero, invalid array indexes, etc.

• Safe to turn off exception checks!

- Data and Information flow

• No uninitialized variables, no unused assignments, etc.

• Data only go where you mean them to go

- Functional correctness at unit level

- Arbitrary properties, e.g., security and safety

Proving Functional Correctness Example

procedure Push (This : in out Stack; Value : in Content) with

Pre => not Full (This),

Post => not Empty (This)

and Top (This) = Value

and Extent (This) = Extent (This'Old) + 1

and Unchanged (This'Old, Within => This) ,

Global => null,

Depends => (This =>+ Value);

…

function Full (This : Stack) return Boolean;

function Empty (This : Stack) return Boolean;

function Top (This : Stack) return Content with

Pre => not Empty (This);

function Extent (This : Stack) return Content_Count;

function Unchanged (Invariant_Part, Within : Stack) return Boolean;

Verified

Statically

Pass the tests the

first time!

Proving Abstract Properties Example

type Move_Result is (Full_Speed, Slow_Down, Keep_Going, Stop);

procedure Move

(Train : in Train_Id;

New_Position : in Train_Position;

Result : out Move_Result)

with

Pre => Valid_Id (Train) and

Valid_Move (Trains (Train), New_Position) and

At_Most_One_Train_Per_Track and

Safe_Signaling,

Post => At_Most_One_Train_Per_Track and

Safe_Signaling;

function At_Most_One_Train_Per_Track return Boolean;

function Safe_Signaling return Boolean;

…

Discussion: Why assert() is not a contract

- C/C++ support the assert() macro

- Each assert instance only checks a condition at the point of
execution

- The macro provides only limited runtime checking

- Other issues

• The macro is expanded by the pre-processor so some operations are not
available such as sizeof the is computed by the compiler

• Macro placement allows preconditions to tested but post conditions can be a
challenge especially with multiple exit points

SPARK Feature: Ghost Code

- Additional code that is only used to prove a program

• Ghost code not impact the behaviour of the program being verified

• Ghost definitions are only used at compile time so there is never runtime
overhead

• Ghost code can be explicitly included in the program for debugging purposes

- Ghost entities include packages, subprograms, types and
variables

• Ghost entities can only be used by contracts and assertion pragmas

• Ghost variables cannot be assigned to program variables

SPARK Feature: Ghost Code Example

Log : Integer_Array with Ghost;
Log_Size : Natural with Ghost;

procedure Add_To_Total (Incr : in Integer) with
Post => Log_Size = Log_Size'Old + 1

and Log = Log'Old'Update (Log_Size => Incr);

procedure Add_To_Total (Incr : in Integer) is
begin

Total := Total + Incr;
Log_Size := Log_Size + 1;
Log (Log_Size) := Incr;

end Add_To_Total;

Used only

for formal

verification

Ghost code

looks like

regular code

but it does not

become part of

the final

executable

Issues Using Ada and SPARK

- Interfacing with other languages like C/C++

• Import and export of functions and procedures is supported

- Compiler availability

• Commercial and open source options available

• Native targets include x86, ARM, RISC-V, PowerPC, SPARC

- Compiler support for target

• GNAT Common Code Generator (CCG) compiler generates C source code

New Ada and SPARK Supporters

NVIDIA https://www.adacore.com/press/adacore-enhances-security-
critical-firmware-with-nvidia

Denso https://www.adacore.com/press/denso-spark-automotive-research

LASP https://www.adacore.com/press/lasp-selects-gnat-pro-for-clarreo

RealHeart https://www.adacore.com/press/scandinavian-real-heart-
selects-adacore-embedded-software-development-platform-for-
revolutionary-artificial-heart

French Security Agency https://blog.adacore.com/security-agency-uses-
spark-for-secure-usb-key

https://protect-us.mimecast.com/s/sM9PCADQm5UNgPVYQC86SSc?domain=adacore.com
https://protect-us.mimecast.com/s/aIcVCBB8n5t71kAoGuNXk_t?domain=adacore.com
https://protect-us.mimecast.com/s/A5VsCDkY05i51WMP9hZku0I?domain=adacore.com
https://protect-us.mimecast.com/s/aNVeCERZP5f3mznP7hZjFX8?domain=adacore.com
https://protect-us.mimecast.com/s/E0vxCG6Y9jf1mPqg7s0mohZ?domain=blog.adacore.com

New Ada and SPARK Resources

- Books

• Programming in Ada 2012 by John Barnes

• https://www.adacore.com/books

- Learn about Ada and SPARK on the web

• https://learn.adacore.com

• https://www.adacore.com/resources

- Open source x86 and ARM Tools: GNAT Community Edition

• https://www.adacore.com/download

LEARN.adacore.com

- Introductory courses for Ada and SPARK

- Interactive compiler windows

- Open to small teams and individuals

- Many projects based on bare-board platforms

- Results are online for 2019 at https://www.makewithada.org/

Takeaway

- Ada and SPARK are ideal for embedded programming even on
microcontrollers

- Ada continues to give more power to the programmer

- SPARK takes Ada a big step further via static verification

- Significant productivity and reliability gains are possible

- The risks are worth the gains

Questions?

Thanks to Adacore’s Patrick Rogers for use of
slides from his Adacore Days 2018 presentation

